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In this section of the course, we will consider the design and specification of finite 
state machine (FSM).  FSM is one of the most important topics in digital design.  It 
provides a formal methodology for a designer to translate specification of a digital 
control specification to actual circuits.
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This is a list of learning outcomes for this lecture. Most of the learning will be 
through a number of examples.
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Lecture Objectives

u To learn how to analyse a state machine
u To learn how to design a state machine to meet specific objectives
u Learn how to specify a FSM in SystemVerilog
u How to combine a FSM with a counter to control state transition
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Here is a simplified generic diagram of a finite (or synchronous) state machine (FSM 
or SSM).  A set of D-flipflips are used to store the current state value.  The current 
state together with external inputs are fed to a combinational logic circuit to 
evaluate two things: the next state and the current outputs.  

With an n-bit register and using binary state encoding (i.e. coding states as binary 
numbers), such machine can have a maximum of 2n states.  

This is a synchronous state machine because the transition to the next state is 
synchronous with the rising edge of the clock signal.  

The output signals, on the other hand is derived from both the current state and the 
current input.  This property makes this a “Mealy” machine.   Beware, the output 
signals are only synchronous to the clock IF all inputs are also synchronous.

There are two basic rules in designing a FSM that operates reliably:
1. Do not put logic in front of the clock signal.  Doing so is likely to cause timing 

issues when the FSM is used in conjunction with the rest of the system.   

2. Avoid using asynchronous SET or RESET signals unless absolutely required by 
the specification.  Doing so would make the rest of the system NOT 
synchronous to the CLOCK signal.
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Synchronous State Machines

u Synchronous State Machine (also called Finite State Machine FSM) 
 

- The current state is defined by the register contents
- Register has k flipflops Þ 2k possible states 
- The state only ever changes on CLOCK­

- We stay in a state for an exact number of CLOCK cycles
- The state is the only memory of the past 
- Output can depend on both current state and current input – Mealy FSM

Rules:
q Never mess around with the clock signal
q Always initialise the FSM to a known initial state on reset or power ON.

current

Mealy FSM
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To summarize, a FSM has three parts:

1. A set of registers to store the current state value.
2. Combinational logic to determine what the next state value should be, i.e. the 

state transition of the FSM.
3. Combinational logic to compute the output signals.  These signals can be 

derived ONLY from the current state value. In which case, this is called “Moore” 
FSM.  Alternatively, the output signals can be derived from both the current 
state and the current input.  This is called a “Mealy” FSM, and the  output 
signals could change in the middle of a clock cycle if input signals are NOT 
synchronized with the CLOCK.

.
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Simple FSM – Moore FSM

u Three parts:
v State registers
v Next state logic
v Output logic

u Moore FSM – special case of Mealy FSM, output depends only on current state

Moore FSM
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Shown here is a simple FSM in details.  The upper group of gates are used to 
compute the output signal Y.  The lower group of gates are used to work out the 
next state values NS0 and NS1.

We will now analyse how this circuit works.   One powerful  tool that we can use is 
to the state transition table.  It is similar to the truth table used for combinational 
circuit, but is used to show the function of the FSM.

Each row in this table represents one state.  Since this FSM has 2 state bits, there are 
4 possible states.

There is one column devoted to each input combination.  In this case, there is only 
one input A.  There would be four columns if there were two inputs.

The contents of the table shows the next state transition, followed by the output 
signal(s) during the current state.   A ‘/’ character is used to separate the two.
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Analysing a State Machine

State Table:
u Truth table for the combinational 

logic:
- One row per state: n flipflops Þ 2n 

rows 
- One column per input combination:

 m input signals Þ 2m columns

- Each cell specifies the next state 
and the output signals during the 
current state
- for clarity, we separate the two 

using a /

Current state

Next state
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Another very powerful tool to show the function of a FSM is to use state diagram 
(one that uses “bubbles”).  For clarity, let us split the state transition table into two 
tables: one for next state NS1:0,  and another for the output signal Y.
We now draw a bubble for each state and label this with the state name (which 
happens in this case to be the same as the state value).  Transition arrows are draw 
between the states with a Boolean expression as a label to indicate the condition 
required for the transition to occur ON THE ACTIVE CLOCK EDGE (positive edge in 
this case).  The transitions are derived direclty from the next state table.  Consider 
state 0, on rising edge of CLOCK, if  A=0, go to state 3, else if A=1, go to state 2.
Inside the bubble, we now indicate the value of Y as another Boolean expression.

In this example, we perform analysis of a circuit designed by someone else.  
Therefore we derive the transition table from the circuit, then the state diagram 
from the state transition table.
When we are designing a FSM from a specification, we usual do this the other way 
round, i.e. design the state diagram from the specification, then draw up the state 
transition table as required and derive the circuit from that.
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Drawing the State Diagram

u Split state table into two parts: next state table and output table

u Transition arrows are marked with Boolean 
expressions saying when they occur
- Every input combination has exactly 

one destination.
- Unlabelled arrows denote unconditional 

transitions 
u Output Signals: Boolean expressions 

within each state
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It is important to note that the behaviour of a FSM is determined by the initial state.  
Given the state diagram and the initial state (assumed here to be state 0), and 
waveform of the input A, we can easily trace the subsequent states S1:0 and the 
output Y.
For our course, we generally use a reset signal to force the FSM to go to an initial 
state.

The FSM here is a Mealy machine because the output Y inside state 0 and 2 are 
Boolean expressions.  If A changes in the middle of a clock cycle, the output Y will 
change immediately.  So the output is NOT dependent on the state of the machine 
alone.
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u Output Signals:
Defined by Boolean expressions within each state.
If all the expressions are constant 0 or 1 then outputs only ever change on  
clock . (Moore machine)
If any expressions involve the inputs (e.g. Y=A) then it is possible for the 
outputs to change in the middle of a state. (Mealy machine)

Timing Diagram

u State machine behaviour is entirely determined by:
- The initial state
- The input signal waveforms

u State Sequence:
- Determine this first. Next state 

depends on input values just before 
CLOCK 
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In order to make the state diagram less cluttered, you can omit the self transition 
arrows.  Therefore the rule is that a state machine stays in its current state unless 
the conditions of an exiting arrow is satisfied.  

In this example, we stay in state 2 until A = 0 on the rising edge of CLOCK.  Then we 
go to state 3.
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Self-Transitions

u We can omit transitions from a 
state to itself
- Aim: to save clutter on the 

diagram

u The state machine remains in its 
current state if none of the 
transition-arrow conditions are 
satisfied
- From state 2, we go to state 3 if 

!A occurs, otherwise we remain 
in state 2
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Instead of specifying outputs inside the state bubble, it is also possible to specify 
outputs on the transition arrow.  There are a few rules that you must follow:
1. For each state, you must specify the output either inside the bubble or on EVERY 

emitted arrow from the state.  
2. You can mix the two conventions in a state diagram, but you must use only one 

method for each (and not mixing them).
3. If you use self transition, as in state 2 here, you must declare the default values 

for each outputs.
4. Output written on an arrow always applies to the state EMITTING the arrow (i.e. 

source not destination).
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Output Expressions on Arrows
u It may make the diagram clearer to put 

output expressions on the arrows instead of 
within the state circles:
- Useful if the same Boolean expression 

determines both the next state and the 
output signals

- For each state, the output specification must 
be either inside the circle or else on every 
emitted arrow

- If self transitions are omitted, we must declare 
default values for the outputs

• Outputs written on an arrow apply to the state 
emitting the arrow.

• Outputs still apply for the entire time spent in a 
state

• This does not affect the Moore/Mealy distinction
• This is a notation change only



Here is a very simple three states FSM.  The intial state is the IDLE state (here 
shown in dotted lines).  The purpose of this machine is to divide clock signal 
by three – out goes high for one cycle every three.

To specify this FSM in SystemVerilog, we divide the SV file into five parts:
1. Interface declaration – define the input and output signals.

2. State enumeration – specify an enumated type, here we call it my_state, 
and give all states a state name (e.g. IDLE, S1, … etc), and then declare 
two state variables: current_state, and next_state.

3. State registers – specify the registers that advance the FSM from state to 
state.

4. State transition logic – specify the combinational logic that computes the 
next state values.

5. Output logic – specify the combinational logic that computes the output 
signals of the FSM.

10
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Example 1: Divide by 3 FSM (Moore)

IDLE

S1

S2
OUT = 1

Default: OUT = 0
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We will now consider the design of a FSM to do some defined function:
Design a circuit to eliminate noise pulses.  A noise pulse (high or low) is one that lasts 
only for one clock cycle.  Therefore, in the waveform shown above, IN goes from low 
to high, but included with some high and some low noise pulses.  The goal is to clean 
this up and produce ideally the output OUT as shown.

Here we label the states with letters a, b, c ….  Starting with a when IN = 0, and we 
are waiting for IN -> 1.  Then we transit to b.  However, this could be a noise pulse.  
Therefore we wait for IN to stay as 1 for another close cycle before transiting to c 
and output a 1.   If IN goes back to zero after one cycle, we go to a, and continue to 
output a 0.

Similar for state c, where we have detect a true 1 for IN. If IN -> 0, we go to d, but 
wait for another cycle for IN staying in 0, before transiting back to state a.  

Therefore this FSM has four states. Note that in reality, OUT is delayed by ONE clock 
cycle. There is in fact no way around this – we have to wait for two cycles of IN=0 or 
IN=1 before deciding on the value of OUT.
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Example 2: Design a Noise Pulse Eliminator (1)

 Design Problem: Noise elimination circuit
- We want to remove pulses that last only one clock cycle

u Use letters a,b,… to label states; we 
choose numbers later.

u Decide what action to take in each 
state for each of the possible input 
conditions.

u Use a Moore machine (i.e. output is 
constant in each state). Easier to 
design but needs more states & adds 
output delay.
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This example illustrates how each state represents a particular history that needs to 
be recorded.   
This slide reiterates how we arrive at the state diagram and what each state means.
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Design a Noise Pulse Eliminator (2)
1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes 

high for only one clock cycle then OUT stays low. It follows that the two histories “IN low 
for ages” and “IN low for ages then high for one clock” are different because if IN is high 
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all. 
This glitch on IN will not affect any of our future actions and so we can just return to state 
a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the 
output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end 
of an output pulse when IN has returned low for one clock cycle. We don’t change OUT 
yet because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of 
the pulse and OUT must go low. We can forget the pulse ever existed and just return to 
state a.

Each state represents a particular history that we need to 
distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state c: IN=1 for >1 clock state d: IN=0 for 1 clock
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Instead of manually designing a state machine, we usually rely on SystemVerilog 
specification and synthesis CAD tools.
Here we use an EXPLICIT reset signal rst to put the state machine in a known state. 

One importance lesson here is that in the transition logic specification, we normally 
use the always_comb + case statements to define the state transition logic. Further, 
if you want to stay in the current state, you just assign current_state to next_state 
as shown here.
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Eliminator design in SystemVerilog

Declarations
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Let us now consider another example, which will appear in the Lab Experiment later.  
You are required to design a pulse generator circuit that, on the positive edge of the 
input IN, a pulse lasting for one clock period is produced.

The state diagram for this circuit is shown here.  There has to be three state: IDLE 
(waiting for IN to go high), the IN_HIGH state when a rising edge is detected for IN, 
and WAIT_LOW state, where we wait for the IN to go low again.

Shown here is the timing diagram for this design. This module is very useful. It 
effective detects a rising edge of a signal, and then produces a pulse at the output 
which is one clock cycle in width.
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Example 3 – A pulse generator

u Design a module pulse_gen.v which does the following: on each positive edge of the 
input signal IN, it generates a pulse lasting for one period of the input clock.

u Needs THREE states (not two).
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This FSM has three states: IDEL, IN_HIGH and WAIT_LOW.  Mapping the state diagram to 
SystemVerilog follows the same pattern as the previous example
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Pulse Generator in SV

u Design a module pulse_gen.v which does the following: on each positive edge of the 
input signal IN, it generates a pulse lasting for one period of the input clk.
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Finally, here is a very useful module that uses a four-state FSM and a counter.  It is the 
combination of the previous example with a counter embedded inside the FSM.
The module detects a rising edge on the trigger input, internally counts K clock cycles, then 
outputs a pulse on time_out.  This effectively delay the trigger rising edge by K clock cycles.

Shown here are the interface and state declaration for the module.  Note that we need to 
also declare the count internal logic, which will eventually synthesized as a counter circuit. 
Note also the way that this counter is initialized to zero without using reset.
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Example 4: delay module (1)

u Here is a very useful module that combines a FSM with a counter.
u It detects the rising edge on trigger, then wait (delay) for n clk cycles before producing a 

1-cycle pulse on time_out.
u The external port interface for this module is shown below.  We assume that n is a 7-bit 

number, or a maximum of 127 sysclk cycles delay.
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Here is the implementation.  Note how the counter value is used in the state transition 
logic.
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Example 4: delay module (2)

IDLE

output: time_out

0

COUNT
-ING

0

TIME_
OUT

1

trigger

(count = 0)

~trigger
WAIT_
LOW

0

trigger

~trigger
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Finally, we need the sequential circuit specifications for state transistion, and for the 
counter logic itself.  

The two always_ff and always_comb blocks can be specified in any order.  Remember, 
SystemVerilog is NOT C++ or normal software language.  The statements aren blocks are 
specifications for hardware and they run in PARALLEL at the same time.

As a result, when specifying these separate blocks of hardware, be aware that you may 
drive the same signal in different “blocks” simultaneously.  Such contentions should be 
picked up by Verilator and a warning or error will be generated.
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Example 4: delay module (3)


