Imperial College
London

Lecture 11

Finite State Machines

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 1

In this section of the course, we will consider the design and specification of finite
state machine (FSM). FSM is one of the most important topics in digital design. It
provides a formal methodology for a designer to translate specification of a digital
control specification to actual circuits.

Lecture Objectives

¢ To learn how to analyse a state machine

¢ Tolearn how to design a state machine to meet specific objectives
¢ Learn how to specify a FSM in SystemVerilog

¢ How to combine a FSM with a counter to control state transition

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 2

This is a list of learning outcomes for this lecture. Most of the learning will be
through a number of examples.

Synchronous State Machines

¢ Synchronous State Machine (also called Finite State Machine FSM)

CLK

M next .|, current
inputs + next k state |] state

outputs

- The current state is defined by the register contents
- Register has k flipflops = 2k possible states
- The state only ever changes on CLOCK®
- We stay in a state for an exact number of CLOCK cycles
- The state is the only memory of the past
- Output can depend on both current state and current input — Mealy FSM

Rules:
o Never mess around with the clock signal
o Always initialise the FSM to a known initial state on reset or power ON.

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 3

Here is a simplified generic diagram of a finite (or synchronous) state machine (FSM
or SSM). A set of D-flipflips are used to store the current state value. The current
state together with external inputs are fed to a combinational logic circuit to
evaluate two things: the next state and the current outputs.

With an n-bit register and using binary state encoding (i.e. coding states as binary
numbers), such machine can have a maximum of 2" states.

This is a synchronous state machine because the transition to the next state is
synchronous with the rising edge of the clock signal.

The output signals, on the other hand is derived from both the current state and the
current input. This property makes this a “Mealy” machine. Beware, the output
signals are only synchronous to the clock IF all inputs are also synchronous.

There are two basic rules in designing a FSM that operates reliably:

1. Do not put logic in front of the clock signal. Doing so is likely to cause timing
issues when the FSM is used in conjunction with the rest of the system.

2. Avoid using asynchronous SET or RESET signals unless absolutely required by
the specification. Doing so would make the rest of the system NOT
synchronous to the CLOCK signal.

Simple FSM — Moore FSM

cLK
M next
inputs + k state \/k state | output

logic

outputs

¢ Three parts:
+ State registers
+ Next state logic
+ Output logic
¢ Moore FSM — special case of Mealy FSM, output depends only on current state

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 4

To summarize, a FSM has three parts:

1. A set of registers to store the current state value.

2. Combinational logic to determine what the next state value should be, i.e. the
state transition of the FSM.

3. Combinational logic to compute the output signals. These signals can be
derived ONLY from the current state value. In which case, this is called “Moore”
FSM. Alternatively, the output signals can be derived from both the current
state and the current input. This is called a “Mealy” FSM, and the output
signals could change in the middle of a clock cycle if input signals are NOT
synchronized with the CLOCK.

Analysing a State Machine

M A Next'state
¢ Truth table for the combinational - ock
logic: P>l
- One row per state: n flipflops = 2" NSO]D 9 S0 —
rows NS1 st & >‘—"_
- One column per input combination: '\ & =
m input signals = 2™ columns \
- Each cell specifies the next state Current state
and the output signals during the NS1.NS0/Y
current state
- for clarity, we separate the two S1.S0 A=0 A=1
usinga/

00 11/0 10/1
01 11/0 10/0
10 11/1 10/0
11 01/1 01/1

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 5

Shown here is a simple FSM in details. The upper group of gates are used to

compute the output signal Y. The lower group of gates are used to work out the
next state values NSO and NS1.

We will now analyse how this circuit works. One powerful tool that we can use is
to the state transition table. It is similar to the truth table used for combinational
circuit, but is used to show the function of the FSM.

Each row in this table represents one state. Since this FSM has 2 state bits, there are
4 possible states.

There is one column devoted to each input combination. In this case, there is only
one input A. There would be four columns if there were two inputs.

The contents of the table shows the next state transition, followed by the output
signal(s) during the current state. A ‘/’ character is used to separate the two.

Drawing the State Diagram

¢ Split state table into two parts: next state table and output table

Next State: NS1:0
NS1.NS0/Y / S1:0 ‘ A0 A=l

n.so‘ A=0 A=l

0 3 2
A A 00 11/0 101 1 3 2
01 11/0 100 2 3 2
10 111 100 3 1 1

11 01/1 01/1

¢ Transition arrows are marked with Boolean
expressions saying when they occur Output Signal: /Y
- Every mput (lzomblnatlon has exactly 10 | A=0 A=]
one destination.
- Unlabelled arrows denote unconditional 0 /0 /1 Y=A

transitions 1 /0 /0 Y=0
¢ Output Signals: Boolean expressions 2 /1 /0 Y=IA
within each state 3 /1 /1 Y=1
PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 6

Another very powerful tool to show the function of a FSM is to use state diagram

(one that uses “bubbles”). For clarity, let us split the state transition table into two
tables: one for next state NS1:0, and another for the output signal Y.

We now draw a bubble for each state and label this with the state name (which
happens in this case to be the same as the state value). Transition arrows are draw
between the states with a Boolean expression as a label to indicate the condition
required for the transition to occur ON THE ACTIVE CLOCK EDGE (positive edge in
this case). The transitions are derived direclty from the next state table. Consider
state 0, on rising edge of CLOCK, if A=0, go to state 3, else if A=1, go to state 2.

Inside the bubble, we now indicate the value of Y as another Boolean expression.

In this example, we perform analysis of a circuit designed by someone else.

Therefore we derive the transition table from the circuit, then the state diagram
from the state transition table.

When we are designing a FSM from a specification, we usual do this the other way
round, i.e. design the state diagram from the specification, then draw up the state
transition table as required and derive the circuit from that.

Timing Diagram

+ State machine behaviour is entirely determined by:
- The initial state
- The input signal waveforms

¢ State Sequence: A
- Determine this first. Next state
depends on input values just before

CLOCK S LO6K
A et ,; a) p
'
State: S1:0 | 0(»{ 3| 1% 2 8; 3| 19 3 |
1
+ Output Signals: x | L

Defined by Boolean expressions within each state.

If all the expressions are constant O or 1 then outputs only ever change on
clock . (Moore machine)

If any expressions involve the inputs (e.g. Y=A) then it is possible for the
outputs to change in the middle of a state. (Mealy machine)

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 7

It is important to note that the behaviour of a FSM is determined by the initial state.
Given the state diagram and the initial state (assumed here to be state 0), and
waveform of the input A, we can easily trace the subsequent states S1:0 and the
output.

For our course, we generally use a reset signal to force the FSM to go to an initial
state.

The FSM here is a Mealy machine because the output Y inside state 0 and 2 are
Boolean expressions. If A changes in the middle of a clock cycle, the output Y will
change immediately. So the output is NOT dependent on the state of the machine

alone.

Self-Transitions

¢ We can omit transitions from a
state to itself
- Aim: to save clutter on the
diagram

¢ The state machine remains in its
current state if none of the
transition-arrow conditions are
satisfied
- From state 2, we go to state 3 if
1A occurs, otherwise we remain
in state 2

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 8

In order to make the state diagram less cluttered, you can omit the self transition
arrows. Therefore the rule is that a state machine stays in its current state unless
the conditions of an exiting arrow is satisfied.

In this example, we stay in state 2 until A = 0 on the rising edge of CLOCK. Then we
go to state 3.

Output Expressions on Arrows

+ It may make the diagram clearer to put
output expressions on the arrows instead of
within the state circles:

- Useful if the same Boolean expression
determines both the next state and the
output signals

- For each state, the output specification must
be either inside the circle or else on every
emitted arrow

- If self transitions are omitted, we must declare
default values for the outputs

Output: /Y + Outputs written on an arrow apply to the state
Default: Y=0 emitting the arrow.

» Outputs still apply for the entire time spent in a
state

* This does not affect the Moore/Mealy distinction

» This is a notation change only

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 9

Instead of specifying outputs inside the state bubble, it is also possible to specify
outputs on the transition arrow. There are a few rules that you must follow:

1. For each state, you must specify the output either inside the bubble or on EVERY
emitted arrow from the state.

2. You can mix the two conventions in a state diagram, but you must use only one
method for each (and not mixing them).

3. If you use self transition, as in state 2 here, you must declare the default values
for each outputs.

4. Output written on an arrow always applies to the state EMITTING the arrow (i.e.
source not destination).

Example 1: Divide by 3 FSM (Moore)

module div3FSM (
input
input
output

typedef enum {IDLE, S1, S2} my_state;
current_state, next_state; Default: OUT =0

y ate N,
always_ff @(posedge clk, posedge rst) A : :

if (rst) current_state <= IDLE;
else current_state <= next_state;

IDLE: next_state = S1;

S1: next_state = S2; i - + £ . y OUtpUtS
s2: next_state = IDLE;

default: next_state = IDLE;

endcase

assign out = (current_state == IDLE);

endmodule

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 10

Here is a very simple three states FSM. The intial state is the IDLE state (here
shown in dotted lines). The purpose of this machine is to divide clock signal
by three — out goes high for one cycle every three.

To specify this FSM in SystemVerilog, we divide the SV file into five parts:

1.
2.

Interface declaration — define the input and output signals.

State enumeration — specify an enumated type, here we call it my_state,
and give all states a state name (e.g. IDLE, S1, ... etc), and then declare
two state variables: current_state, and next_state.

State registers — specify the registers that advance the FSM from state to
state.

State transition logic — specify the combinational logic that computes the
next state values.

Output logic — specify the combinational logic that computes the output
signals of the FSM.

10

Example 2: Design a Noise Pulse Eliminator (1)

+ Design Problem: Noise elimination circuit a=...00
- We want to remove pulses that last only one clock cycle b= ...001
c=...11
N LT U U LIL
OUT [ideal] ...110

0“0
¢ Use letters a,b,... to label states; we
choose numbers later. @
+ Decide what action to take in each

state for each of the possible input 0
conditions.

0
¢ Use a Moore machine (i.e. output is 3)
constant in each state). Easier to
4
50 (D
0

design but needs more states & adds
PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 11

output delay. @

=]
G-

We will now consider the design of a FSM to do some defined function:

Design a circuit to eliminate noise pulses. A noise pulse (high or low) is one that lasts
only for one clock cycle. Therefore, in the waveform shown above, IN goes from low
to high, but included with some high and some low noise pulses. The goal is to clean
this up and produce ideally the output OUT as shown.

Here we label the states with letters a, b, c Starting with a when IN =0, and we
are waiting for IN -> 1. Then we transit to b. However, this could be a noise pulse.
Therefore we wait for IN to stay as 1 for another close cycle before transiting to ¢
and output a 1. If IN goes back to zero after one cycle, we go to a, and continue to
outputa O.

Similar for state ¢, where we have detect a true 1 for IN. If IN -> 0, we go to d, but
wait for another cycle for IN staying in 0, before transiting back to state a.

Therefore this FSM has four states. Note that in reality, OUT is delayed by ONE clock
cycle. There is in fact no way around this — we have to wait for two cycles of IN=0 or
IN=1 before deciding on the value of OUT.

11

Design a Noise Pulse Eliminator (2)

1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes
high for only one clock cycle then OUT stays low. It follows that the two histories “IN low
for ages” and “IN low for ages then high for one clock” are different because if IN is high
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all.
This glitch on IN will not affect any of our future actions and so we can just return to state
a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the
output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end
of an output pulse when IN has returned low for one clock cycle. We don’t change OUT
yet because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of
the pulse and OUT must go low. We can forget the pulse ever existed and just return to

state a.
Each state represents a particular history that we need to
distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state c: IN=1 for >1 clock state d: IN=0 for 1 clock
PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 12

This example illustrates how each state represents a particular history that needs to
be recorded.

This slide reiterates how we arrive at the state diagram and what each state means.

12

Eliminator design in SystemVerilog

module eliminator
input ogic clk,
input ogic rst,
input
output

Declarations

typedef enum {S_A, S_B, S_C, S_D} my_state;
1te current_state, next_state;

always_comb
case (current_state

S_A: if (in==1'bl next_state = S_B;
else next_state current_state;
if (in==1'bl next_state SHE
else next_state S_A;
if (in==1'b@ next_state = S_D;
else next_state current_state;
if (in==1'bl next_state = S_C;
else next_state = S_A;

default: next_state = S_A;

always_ff @(posedge clk)
if (rst) current_state <= S_A;
else current_state <= next_state;

always_comb

case (current_state
S_A: out = 1'b0;
S_B: out = 1'b0;
SE(E= out = 1'b1;
S_D: out = 1'b1;
default: out = 1'b0;

endcase

PYKC 18 Nov 2025 EE2 Circuits & Systems

Lecture 11 Slide 13

Instead of manually designing a state machine, we usually rely on SystemVerilog

specification and synthesis CAD tools.

Here we use an EXPLICIT reset signal rst to put the state machine in a known state.

One importance lesson here is that in the transition logic specification, we normally
use the always_comb + case statements to define the state transition logic. Further,
if you want to stay in the current state, you just assign current_state to next_state

as shown here.

13

Example 3 — A pulse generator

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clock.

Msgs
2/dk StD
2fin St
2fpulse 0

0

2fstate

Now [J00 ps Lrrne
Lursor U DS

IN_HIGH

sle

Si¢
WAIT_LOW |

¢ Needs THREE states (not two).

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 14

Let us now consider another example, which will appear in the Lab Experiment later.

You are required to design a pulse generator circuit that, on the positive edge of the
input IN, a pulse lasting for one clock period is produced.

The state diagram for this circuit is shown here. There has to be three state: IDLE
(waiting for IN to go high), the IN_HIGH state when a rising edge is detected for IN,
and WAIT_LOW state, where we wait for the IN to go low again.

Shown here is the timing diagram for this design. This module is very useful. It
effective detects a rising edge of a signal, and then produces a pulse at the output
which is one clock cycle in width.

14

Pulse Generator in SV

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clk.

input) clk,
input ogic rst,
input og in,
output logic pulse

typedef enum {IDLE, IN_HIGH, WAIT_LOW} my_state;
ite current_state, next_state;

always_ff @(posedge clk)
if (rst) current_state <= IDLE;
else current_state <= next_state;

always_comb
s current_state
IDLE: if (in==1'b1 next_state
else next_state
IN_HIGH: if (in==1'b1 next_state
else next_state

always_comb
IN_HIGH; i
current_state; case (current_state
WAIT_LOW; IDLE: pulse

IDLE; IN_HIGH: pulse =
WAIT_LOW: f (in==1'b0 t_state = IDLE;

HIB e o WAIT_LOW: pulse =

else next_state current_state; "

default: next_state = IDLE; default: pulse =

endc

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 15

This FSM has three states: IDEL, IN_HIGH and WAIT_LOW. Mapping the state diagram to
SystemVerilog follows the same pattern as the previous example

15

Example 4: delay module (1)

¢ Here is a very useful module that combines a FSM with a counter.
+ |t detects the rising edge on trigger, then wait (delay) for n clk cycles before producing a
1-cycle pulse on time_out.
¢ The external port interface for this module is shown below. We assume that n is a 7-bit
number, or a maximum of 127 sysclk cycles delay.
module delay #(
parameter WIDTH = 7
delay.sv) (
7 K input 0gic clk,
7 I time_out input GRSty
X input trigger,
trigger input k,
rst output 0gic time_out
— Dk
)gic [WIDTH-1:0] count = {WIDTH{1'b@}};
typedef enum {IDLE, COUNTING, TIME_OUT, WAIT_LOW} my_state;
T tate current_state, next_state;
PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 16

Finally, here is a very useful module that uses a four-state FSM and a counter. It is the
combination of the previous example with a counter embedded inside the FSM.

The module detects a rising edge on the trigger input, internally counts K clock cycles, then
outputs a pulse on time_out. This effectively delay the trigger rising edge by K clock cycles.

Shown here are the interface and state declaration for the module. Note that we need to
also declare the count internal logic, which will eventually synthesized as a counter circuit.
Note also the way that this counter is initialized to zero without using reset.

16

Example 4: delay module (2)

output: time_out

trigger

trigger

(

count = 0)

always_comb

current_state

IDLE: if
else

COUNTING: if
else

TIME_OUT: if
else

case
trigger==1'bl) n
next_state =
count=={WIDTH{1'b
next_state =
trigger==1'bl) n
next_state =
WAIT_LOW: if (trigger==1'b@) n
else next_state =

default: next_state = IDLE;

always_comb
se (current_state

IDLE: time_out

COUNTING:

TIME_OUT:

WAIT_LOW:

default:

time_out
time_out
time_out
time_out

ext_state = COUNTING;
current_state;

0}}) next_state = TIME_OUT;
current_state;

ext_state = WAIT_LOW;

IDLE;

ext_state = IDLE;
current_state;

PYKC 18 Nov 2025

EE2 Circuits & Systems

Lecture 11 Slide 17

Here is the implementation. Note how the counter value is used in the state transition

logic.

17

Example 4: delay module (3)

always_ff @(posedge clk)
if (rst | trigger | count=={WIDTH{1'b@}}) count <= k - 1'bl;
else count <= count - 1'b1;

always_ff @(posedge clk)
if (rst) current_state <= IDLE;
else current_state <= next_state;

PYKC 18 Nov 2025 EE2 Circuits & Systems Lecture 11 Slide 18

Finally, we need the sequential circuit specifications for state transistion, and for the
counter logic itself.

The two always_ff and always_comb blocks can be specified in any order. Remember,
SystemVerilog is NOT C++ or normal software language. The statements aren blocks are
specifications for hardware and they run in PARALLEL at the same time.

As a result, when specifying these separate blocks of hardware, be aware that you may
drive the same signal in different “blocks” simultaneously. Such contentions should be
picked up by Verilator and a warning or error will be generated.

18

